MATH-449 - Biostatistics
EPFL, Spring 2023
Problem Set 4 - Answer Key

1. (Exercise 2.4 in ABG 2008) Let M be a discrete time martingale with respect to the filtration
Fn, for n € {0,1,2,---}, and suppose My = 0. Prove that M? — (M) is a martingale with
respect to the filtration F, that is, that E(M2 — (M), |Fn_1) = M2_; — (M), _1.

Solution We have (M),, = >""" | E[(M; — M;_1)?|F;_1] and (M), = 0 by definition, which
means that Mg — (M)o = 0. For n > 0,

E[MZ = (M) Fo 1] = E[(My = M1 + My_1)* = E[(My = My1)*|Fp 1] = (M) 1]]-"n 1}

= B[(My = My 1) + M2, = E[(My — My 1 1 F ]| Fs

= E|:(Mn — Mn_1)2 - E[(Mn - Mn—l)z‘Fn—l]’Fn—l} + Mrzz—l - <M>TL—1
= Mv% 1 <M>nfl
where we used that E[(M,, — M,_1)M,_1] = 0, and that (M),_; and M?2_; are F,_1-

measurable.

2. Suppose we have n independent survival times {7;}"_,, where T; corresponds to the time of
death of individual i. Suppose we somehow could observe each individual from ¢t = 0 up to
his/her time of death.

In the lectures you learned that a counting process {N(¢)}:>0 is an increasing right-continuous
integer-valued stochastic process such that N(0) = 0. Write down the counting process Nf
(that ”counts” the death of individual 7) in terms of T;.

Solution NY has at most one jump, at time T;. As NF(t) is right-continuous it must take
the form Nf(t) = I(T; <)

You have also learned about the intensity process A of a counting process N with respect to a
filtration F. It is informally defined through the relationship A(¢)dt = E[dN (t)|Fy].

3. Argue that the intensity of N¢ is given by A{(¢) = «;(¢)Z;(t), where Z;(t) = I(T; > t).

In general, if the intensity A(¢) of a counting process N(t) with respect to F; can be written
on the form
A(t) = a(t) - Z(1),

where a is an unknown deterministic function and Z is an Fj-predictable® function that does
not depend on «, N (t) is said to satisfy the multiplicative intensity model*.

4. (Exercise 1.10 in ABG 2008) Consider the scenario in Exercise 2, and let Ff be the filtration
generated by {Nf(s),s < t,i = 1,---,n}. In the lectures we have seen that the intensity
of N¢ with respect to F¢ in this case is A{(t) = E[dNfF(t)|Ff] = «;(t)Z;(t), where a;(t) is
the hazard function of individual ¢ and Z;(t) = I(T; > t). Consider the aggregated counting
process N¢(t) = Y" | NE(t).

i) Let {n;(t)}"_; be known, positive, continuous functions. Find the intensity process of N¢
with respect to Ff when «; take the following forms:

a) a;(t) = a(t)
b) ai(t) = ni(t)(t)
c) ai(t) = aft) +ni(t)

S$Recall that this holds when Z is left-continuous and adapted to F, i.e. that all the information needed to know
the value of Z at time t is contained in F.
*We will later derive estimators for the unknown function o under the multiplicative intensity model.




ii) For which of the three cases in i) does N€ satisfy the multiplicative intensity model?

Solution We have

A(t)dt = E[dNC(t)|Ff]

=Y BN ()| F]

i=1
= ai(t)Z(t)dt.
i=1
Define Z(t) = i, Z;(t) and Z,(t) = >.1 1:(t)Z;(t). Note first that Z; is left-continuous.

Also, all the information needed to determine whether 7; have happened at t is contained in
F¢. We thus have

i) a) A(t) = a(t)Z(1)
b) A°(t) = a(t)Z, (1)
c) X(t) = a(t)Z(t) + Z,(t).
ii) a) Yes
b) Yes

¢) No. For any representation A\°(t) = @(t)Z(t), either & will not be deterministic or Z
will be a function of a.

5. Let N be a nonhomogeneous Poisson process with deterministic intensity function a(t). Define
H(t) = fot a(s)ds. The following two points i)-ii) provide equivalent definitions of such a
process:

i) e N(t)— N(s) ~ Poisson(H(t) — H(s)) for s <t
o N(t) — N(s) is independent of F, for s < ¢
ii)
P(Nyys — Ny = 1|F) = a(t)6 + o(6?)
P(Nt+5 - Nt = O‘ft) =1- a(t)5 + 0(52)

as 6 — 0F.

Here, F is the filtration generated by N. The second condition in i) implies that E[N(t) —
N(s)|Fs] = E[N(t) = N(s)].
a) Show that M = N — H is a martingale with respect to F.*

b) Show that the increments of M are uncorrelated, i.e. that, for v <u < s <t, |

E[(M(t) = M(s))(M(u) = M(v))] = 0.

Suppose that N is only recorded up to the deterministic time X, and define N*(t) =
N(min{t, X}). Thus, N* is the process N censored at X.

c) Argue that N*(¢) is the observed number of jumps of N up to time ¢, and demonstrate
that N* satisfies the multiplicative intensity model.*

d) Suppose now that X is a random variable. Verify that the conclusion in ¢) holds when
{X <t} € F; for each t, or equivalently, that I(X < -) is adapted to F.5

*Hint: A Poisson distributed variable with parameter A > 0 has mean \.

TNote: this is true for any martingale M, not just the one from a).

THint: start with definition ii). Alternatively, you may find it helpful to use N*(t) = fg I(X > s)dNs.

§X is then called a stopping time with respect to F. Heuristically, F; contains enough information to determine
whether X has occurred by t.



Solution

a) Since N(t) — N(s) is Poisson distributed with parameter H(t) — H(s) we have E[N(t) —
N(s)] = H(t) — H(s). Moreover, as N(t) — N(s) is independent of F, we have that
E[N(t) — N(s)|Fs] = E[N(t) — N(s)] Combining those two observations we get

E[N(t) = H(t) = (N(s) = H(s))|Fs] = E[N(t) = N(s)|Fs] = (H(t) — H(s))
= E[N(t) = N(s)] = (H(t) — H(s))
=0,
where we used the fact that H(¢) and H(s) are F-measurable (since they are deterministic

functions) in the first line, that N(¢) — N(s) is independent of F, in the second line, and
the expectation of a Poisson distributed variable in the third line.

b) We have

where we used the law of total expectation in the first line, the fact that M (u) — M (v)
is Fs-measurable in the second line (since u,v < s), and the definition of a martingale in
the last line.

¢) Definition ii) leads to the infinitesimal result
E[dN(t)|F] = a(t)dt.

Clearly, the intensity of N* coincides with the intensity of N for X > ¢, while it is zero
for X < t. Thus

E[AN*(8)|F] = a(t)[(X > t)dt,

which means that the intensity of N*(¢) with respect to F; is a(t)I(X > t), and N* satis—

fies the multiplicative intensity model. Alternatively, use the identity N*( fo
$)dN (s) directly. This leads to
E[dN*(t)|Fi] = E[I(X = t)dN(t)|F]
= I(X = t)E[dN ()| F]
=I(X = t)a(t)dt
where we used the fact that I(X > -) is adapted (since it is deterministic) in the second
line.

d) We still have that the intensity of N*(¢) is A*(¢) = a(¢)I(X > t). By this choice of X,
I(X > -) is both adapted to F and left-continuous, and \*(¢) satisfies the multiplicative
intensity model.

Solution

a) Since N(t) — N(s) is Poisson distributed with parameter H(t) — H(s) we have E[N(t) —
N(s)] = H(t) — H(s). Moreover, as N(t) — N(s) is independent of Fy we have that
E[N(t) — N(s)|Fs] = E[N(t) — N(s)] Combining those two observations we get

E[N(t) = H(t) = (N(s) = H(s))|Fs] = E[N(t) = N(s)|F] = (H(t) = H(s))
— B[N() ~ N(s)] — (H(t) — H(s))
-0,



where we used the fact that H(¢) and H(s) are F-measurable (since they are deterministic
functions) in the first line, that N(¢) — N(s) is independent of F; in the second line, and
the expectation of a Poisson distributed variable in the third line.

b) We have
B[(M(1) ~ M(s)) (M(u) ~ M(v))] = B[E[(M(t) ~ M(3))(M(u) ~ M(v))| 7]
= B[E[(M(t) - M(s)|F.] (M(u) - M(v))
— B[ (BIM(1)|F,) = M(s))(M(u) — M(v))]
=0,

where we used the law of total expectation in the first line, the fact that M(u) — M (v)
is Fs-measurable in the second line (since u,v < s), and the definition of a martingale in
the last line.

¢) Definition ii) leads to the infinitesimal result
E[dN (t)|F] = a(t)dt.

Clearly, the intensity of N* coincides with the intensity of N for X > ¢, while it is zero
for X < t. Thus

E[AN*(8)|F] = a(t)[(X > t)dt,

which means that the intensity of N*(¢) with respect to F; is a(t)I(X > t), and N* satis-

fies the multiplicative intensity model. Alternatively, use the identity N*(¢) = fg I(X >
$)dN(s) directly. This leads to

E[dN*(t)|F] = E[I(X > t)dN(t)|F]
= I(X > t)E[dN (t)|F]
=I(X > t)a(t)dt,

where we used the fact that (X > -) is adapted (since it is deterministic) in the second
line.

d) We still have that the intensity of N*(¢) is A*(¢) = a(¢)I(X > t). By this choice of X,
I(X > -) is both adapted to F and left-continuous, and \*(¢) satisfies the multiplicative
intensity model.

6. In this problem we will use the definition of the optional variation process [-] from the lecture
notes. Thus, we will need to take limits [G](t) = limp—o00 >y (G(kt/n) — G((k — 1)t/n))2
(in probability) of processes G.

Let {N(t) : t € [0,7]} be a counting process. Let A be the intensity of N with respect to
some filtration F, so that A(t) = fot A(s)ds is the cumulative intensity, and M = N — A is a
martingale with respect to F. Assume that fOT A(s)%2ds < K for some constant K.

a) Show that N has a finite number of jumps with probability 1. Hint: start by looking at
E[N(7)], use that M is a martingale and that [ A(s)?ds < K.1

b) Show that the optional variation process [N] is equal to N (recall that there are no tied
event times, so that N(t) — N(t—) < 1 for all ¢).

Solution

THint: Use also the inequality (f; f(s)ds)2 < (b—a) f; f(s)?ds.



a) We have that [ A(s)ds < \/fo 12ds - [ A(s)?ds < /7K, where we used the Cauchy-
Schwarz inequality, and the assumptlon fo 2ds < K for some constant K. We can

Als)
thus conclude that E[N E[fy A(s)ds] < V7K. Now, this implies that P(N(7) <
o0) =1 (otherwise
E[N(7)]
wouldn’t be finite). Thus, with probability 1, a realisation of N will have a finite number

of jumps.

b) Choose n’ large enough so that each of the intervals {[(k—1)t/n’, kt/n’)}zz1 has at most
one event (we have seen that such an n’ is guaranteed to exist). Thus,

1, if there is an event in[(k — 1)t/n’, kt/n’)

0, otherwise.

(N(kt/n') = N((k — 1)t/n"))* = {

Since N has a total of N(t) jumps of size 1 up to ¢, the sum reduces to

>~ (N(kt/m) = N((k = 1)t/m))” = N (1),
k=1
whenever n > n’. Hence,
[N)(t) = lim S~ (N(kt/n) — N((k — 1)t/n))* = N(1).

n—o0
k=1

7. Suppose M = {My, M1, Ms, ...} is a discrete Martingale. Show that Cov(M,,, M,, — M,,,) =
0,vn > m.

Solution



