

MATH-449 - Biostatistics
EPFL, Spring 2023
Problem Set 4 - Answer Key

1. (Exercise 2.4 in ABG 2008) Let M be a discrete time martingale with respect to the filtration \mathcal{F}_n , for $n \in \{0, 1, 2, \dots\}$, and suppose $M_0 = 0$. Prove that $M^2 - \langle M \rangle$ is a martingale with respect to the filtration \mathcal{F} , that is, that $E(M_n^2 - \langle M \rangle_n | \mathcal{F}_{n-1}) = M_{n-1}^2 - \langle M \rangle_{n-1}$.

Solution We have $\langle M \rangle_n = \sum_{i=1}^n E[(M_i - M_{i-1})^2 | \mathcal{F}_{i-1}]$ and $\langle M \rangle_0 = 0$ by definition, which means that $M_0^2 - \langle M \rangle_0 = 0$. For $n > 0$,

$$\begin{aligned} E[M_n^2 - \langle M \rangle_n | \mathcal{F}_{n-1}] &= E[(M_n - M_{n-1} + M_{n-1})^2 - E[(M_n - M_{n-1})^2 | \mathcal{F}_{n-1}] - \langle M \rangle_{n-1} | \mathcal{F}_{n-1}] \\ &= E[(M_n - M_{n-1})^2 + M_{n-1}^2 - E[(M_n - M_{n-1})^2 | \mathcal{F}_{n-1}] | \mathcal{F}_{n-1}] - \langle M \rangle_{n-1} \\ &= E[(M_n - M_{n-1})^2 - E[(M_n - M_{n-1})^2 | \mathcal{F}_{n-1}] | \mathcal{F}_{n-1}] + M_{n-1}^2 - \langle M \rangle_{n-1} \\ &= M_{n-1}^2 - \langle M \rangle_{n-1} \end{aligned}$$

where we used that $E[(M_n - M_{n-1})M_{n-1}] = 0$, and that $\langle M \rangle_{n-1}$ and M_{n-1}^2 are \mathcal{F}_{n-1} -measurable.

2. Suppose we have n independent survival times $\{T_i\}_{i=1}^n$, where T_i corresponds to the time of death of individual i . Suppose we somehow could observe each individual from $t = 0$ up to his/her time of death.

In the lectures you learned that a counting process $\{N(t)\}_{t \geq 0}$ is an increasing right-continuous integer-valued stochastic process such that $N(0) = 0$. Write down the counting process N_i^c (that "counts" the death of individual i) in terms of T_i .

Solution N_i^c has at most one jump, at time T_i . As $N_i^c(t)$ is right-continuous it must take the form $N_i^c(t) = I(T_i \leq t)$

You have also learned about the *intensity process* λ of a counting process N with respect to a filtration \mathcal{F} . It is informally defined through the relationship $\lambda(t)dt = E[dN(t)|\mathcal{F}_t]$.

3. Argue that the intensity of N^c is given by $\lambda_i^c(t) = \alpha_i(t)Z_i(t)$, where $Z_i(t) = I(T_i \geq t)$.

In general, if the intensity $\lambda(t)$ of a counting process $N(t)$ with respect to \mathcal{F}_t can be written on the form

$$\lambda(t) = \alpha(t) \cdot Z(t),$$

where α is an unknown deterministic function and Z is an \mathcal{F}_t -predictable[§] function that does not depend on α , $N(t)$ is said to satisfy the *multiplicative intensity model*^{*}.

4. (Exercise 1.10 in ABG 2008) Consider the scenario in Exercise 2, and let \mathcal{F}_t^c be the filtration generated by $\{N_i^c(s), s \leq t, i = 1, \dots, n\}$. In the lectures we have seen that the intensity of N_i^c with respect to \mathcal{F}^c in this case is $\lambda_i^c(t) = E[dN_i^c(t)|\mathcal{F}_t^c] = \alpha_i(t)Z_i(t)$, where $\alpha_i(t)$ is the hazard function of individual i and $Z_i(t) = I(T_i \geq t)$. Consider the aggregated counting process $N^c(t) = \sum_{i=1}^n N_i^c(t)$.

i) Let $\{\eta_i(t)\}_{i=1}^n$ be known, positive, continuous functions. Find the intensity process of N^c with respect to \mathcal{F}_t^c when α_i take the following forms:

- $\alpha_i(t) = \alpha(t)$
- $\alpha_i(t) = \eta_i(t)\alpha(t)$
- $\alpha_i(t) = \alpha(t) + \eta_i(t)$

[§]Recall that this holds when Z is left-continuous and adapted to \mathcal{F} , i.e. that all the information needed to know the value of Z at time t is contained in \mathcal{F}_t .

^{*}We will later derive estimators for the unknown function α under the multiplicative intensity model.

ii) For which of the three cases in i) does N^c satisfy the multiplicative intensity model?

Solution We have

$$\begin{aligned}\lambda^c(t)dt &= E[dN^c(t)|\mathcal{F}_t^c] \\ &= \sum_{i=1}^n E[dN_i^c(t)|\mathcal{F}_t^c] \\ &= \sum_{i=1}^n \alpha_i(t)Z_i(t)dt.\end{aligned}$$

Define $Z(t) = \sum_{i=1}^n Z_i(t)$ and $Z_\eta(t) = \sum_{i=1}^n \eta_i(t)Z_i(t)$. Note first that Z_i is left-continuous. Also, all the information needed to determine whether T_i have happened at t is contained in \mathcal{F}_t^c . We thus have

- i) a) $\lambda^c(t) = \alpha(t)Z(t)$
b) $\lambda^c(t) = \alpha(t)Z_\eta(t)$
c) $\lambda^c(t) = \alpha(t)Z(t) + Z_\eta(t)$.
- ii) a) Yes
b) Yes
c) No. For any representation $\lambda^c(t) = \tilde{\alpha}(t)\tilde{Z}(t)$, either $\tilde{\alpha}$ will not be deterministic or \tilde{Z} will be a function of α .

5. Let N be a nonhomogeneous Poisson process with deterministic intensity function $\alpha(t)$. Define $H(t) = \int_0^t \alpha(s)ds$. The following two points i)-ii) provide equivalent definitions of such a process:

- i) • $N(t) - N(s) \sim \text{Poisson}(H(t) - H(s))$ for $s < t$
• $N(t) - N(s)$ is independent of \mathcal{F}_s for $s < t$
- ii)

$$\begin{aligned}P(N_{t+\delta} - N_t = 1|\mathcal{F}_t) &= \alpha(t)\delta + o(\delta^2) \\ P(N_{t+\delta} - N_t = 0|\mathcal{F}_t) &= 1 - \alpha(t)\delta + o(\delta^2)\end{aligned}$$

as $\delta \rightarrow 0^+$.

Here, \mathcal{F} is the filtration generated by N . The second condition in i) implies that $E[N(t) - N(s)|\mathcal{F}_s] = E[N(t) - N(s)]$.

- a) Show that $M = N - H$ is a martingale with respect to \mathcal{F} .^{*}
- b) Show that the increments of M are uncorrelated, i.e. that, for $v \leq u \leq s \leq t$,[†]

$$E[(M(t) - M(s))(M(u) - M(v))] = 0.$$

Suppose that N is only recorded up to the deterministic time X , and define $N^*(t) = N(\min\{t, X\})$. Thus, N^* is the process N censored at X .

- c) Argue that $N^*(t)$ is the observed number of jumps of N up to time t , and demonstrate that N^* satisfies the multiplicative intensity model.[‡]
- d) Suppose now that X is a random variable. Verify that the conclusion in c) holds when $\{X \leq t\} \in \mathcal{F}_t$ for each t , or equivalently, that $I(X \leq \cdot)$ is adapted to \mathcal{F} .[§]

^{*}Hint: A Poisson distributed variable with parameter $\lambda > 0$ has mean λ .

[†]Note: this is true for any martingale M , not just the one from a).

[‡]Hint: start with definition ii). Alternatively, you may find it helpful to use $N^*(t) = \int_0^t I(X \geq s)dN_s$.

[§] X is then called a *stopping time* with respect to \mathcal{F} . Heuristically, \mathcal{F}_t contains enough information to determine whether X has occurred by t .

Solution

a) Since $N(t) - N(s)$ is Poisson distributed with parameter $H(t) - H(s)$ we have $E[N(t) - N(s)] = H(t) - H(s)$. Moreover, as $N(t) - N(s)$ is independent of \mathcal{F}_s we have that $E[N(t) - N(s)|\mathcal{F}_s] = E[N(t) - N(s)]$ Combining those two observations we get

$$\begin{aligned} E[N(t) - H(t) - (N(s) - H(s))|\mathcal{F}_s] &= E[N(t) - N(s)|\mathcal{F}_s] - (H(t) - H(s)) \\ &= E[N(t) - N(s)] - (H(t) - H(s)) \\ &= 0, \end{aligned}$$

where we used the fact that $H(t)$ and $H(s)$ are \mathcal{F} -measurable (since they are deterministic functions) in the first line, that $N(t) - N(s)$ is independent of \mathcal{F}_s in the second line, and the expectation of a Poisson distributed variable in the third line.

b) We have

$$\begin{aligned} E[(M(t) - M(s))(M(u) - M(v))] &= E\left[E[(M(t) - M(s))(M(u) - M(v))|\mathcal{F}_s]\right] \\ &= E\left[E[(M(t) - M(s))|\mathcal{F}_s](M(u) - M(v))\right] \\ &= E\left[(E[M(t)|\mathcal{F}_s] - M(s))(M(u) - M(v))\right] \\ &= 0, \end{aligned}$$

where we used the law of total expectation in the first line, the fact that $M(u) - M(v)$ is \mathcal{F}_s -measurable in the second line (since $u, v \leq s$), and the definition of a martingale in the last line.

c) Definition ii) leads to the infinitesimal result

$$E[dN(t)|\mathcal{F}_t] = \alpha(t)dt.$$

Clearly, the intensity of N^* coincides with the intensity of N for $X \geq t$, while it is zero for $X < t$. Thus

$$E[dN^*(t)|\mathcal{F}_t] = \alpha(t)I(X \geq t)dt,$$

which means that the intensity of $N^*(t)$ with respect to \mathcal{F}_t is $\alpha(t)I(X \geq t)$, and N^* satisfies the multiplicative intensity model. Alternatively, use the identity $N^*(t) = \int_0^t I(X \geq s)dN(s)$ directly. This leads to

$$\begin{aligned} E[dN^*(t)|\mathcal{F}_t] &= E[I(X \geq t)dN(t)|\mathcal{F}_t] \\ &= I(X \geq t)E[dN(t)|\mathcal{F}_t] \\ &= I(X \geq t)\alpha(t)dt, \end{aligned}$$

where we used the fact that $I(X \geq \cdot)$ is adapted (since it is deterministic) in the second line.

d) We still have that the intensity of $N^*(t)$ is $\lambda^*(t) = \alpha(t)I(X \geq t)$. By this choice of X , $I(X \geq \cdot)$ is both adapted to \mathcal{F} and left-continuous, and $\lambda^*(t)$ satisfies the multiplicative intensity model.

Solution

a) Since $N(t) - N(s)$ is Poisson distributed with parameter $H(t) - H(s)$ we have $E[N(t) - N(s)] = H(t) - H(s)$. Moreover, as $N(t) - N(s)$ is independent of \mathcal{F}_s we have that $E[N(t) - N(s)|\mathcal{F}_s] = E[N(t) - N(s)]$ Combining those two observations we get

$$\begin{aligned} E[N(t) - H(t) - (N(s) - H(s))|\mathcal{F}_s] &= E[N(t) - N(s)|\mathcal{F}_s] - (H(t) - H(s)) \\ &= E[N(t) - N(s)] - (H(t) - H(s)) \\ &= 0, \end{aligned}$$

where we used the fact that $H(t)$ and $H(s)$ are \mathcal{F} -measurable (since they are deterministic functions) in the first line, that $N(t) - N(s)$ is independent of \mathcal{F}_s in the second line, and the expectation of a Poisson distributed variable in the third line.

b) We have

$$\begin{aligned} E[(M(t) - M(s))(M(u) - M(v))] &= E\left[E[(M(t) - M(s))(M(u) - M(v))|\mathcal{F}_s]\right] \\ &= E\left[E[(M(t) - M(s))|\mathcal{F}_s](M(u) - M(v))\right] \\ &= E\left[(E[M(t)|\mathcal{F}_s] - M(s))(M(u) - M(v))\right] \\ &= 0, \end{aligned}$$

where we used the law of total expectation in the first line, the fact that $M(u) - M(v)$ is \mathcal{F}_s -measurable in the second line (since $u, v \leq s$), and the definition of a martingale in the last line.

c) Definition ii) leads to the infinitesimal result

$$E[dN(t)|\mathcal{F}_t] = \alpha(t)dt.$$

Clearly, the intensity of N^* coincides with the intensity of N for $X \geq t$, while it is zero for $X < t$. Thus

$$E[dN^*(t)|\mathcal{F}_t] = \alpha(t)I(X \geq t)dt,$$

which means that the intensity of $N^*(t)$ with respect to \mathcal{F}_t is $\alpha(t)I(X \geq t)$, and N^* satisfies the multiplicative intensity model. Alternatively, use the identity $N^*(t) = \int_0^t I(X \geq s)dN(s)$ directly. This leads to

$$\begin{aligned} E[dN^*(t)|\mathcal{F}_t] &= E[I(X \geq t)dN(t)|\mathcal{F}_t] \\ &= I(X \geq t)E[dN(t)|\mathcal{F}_t] \\ &= I(X \geq t)\alpha(t)dt, \end{aligned}$$

where we used the fact that $I(X \geq \cdot)$ is adapted (since it is deterministic) in the second line.

d) We still have that the intensity of $N^*(t)$ is $\lambda^*(t) = \alpha(t)I(X \geq t)$. By this choice of X , $I(X \geq \cdot)$ is both adapted to \mathcal{F} and left-continuous, and $\lambda^*(t)$ satisfies the multiplicative intensity model.

6. In this problem we will use the definition of the optional variation process $[\cdot]$ from the lecture notes. Thus, we will need to take limits $[G](t) = \lim_{n \rightarrow \infty} \sum_{k=1}^n (G(kt/n) - G((k-1)t/n))^2$ (in probability) of processes G .

Let $\{N(t) : t \in [0, \tau]\}$ be a counting process. Let λ be the intensity of N with respect to some filtration \mathcal{F} , so that $\Lambda(t) = \int_0^t \lambda(s)ds$ is the cumulative intensity, and $M = N - \Lambda$ is a martingale with respect to \mathcal{F} . Assume that $\int_0^\tau \lambda(s)^2 ds \leq K$ for some constant K .

a) Show that N has a finite number of jumps with probability 1. Hint: start by looking at $E[N(\tau)]$, use that M is a martingale and that $\int_0^\tau \lambda(s)^2 ds \leq K$.[¶]

b) Show that the optional variation process $[N]$ is equal to N (recall that there are no tied event times, so that $N(t) - N(t-) \leq 1$ for all t).

Solution

[¶]Hint: Use also the inequality $(\int_a^b f(s)ds)^2 \leq (b-a) \int_a^b f(s)^2 ds$.

a) We have that $\int_0^\tau \lambda(s)ds \leq \sqrt{\int_0^\tau 1^2 ds \cdot \int_0^\tau \lambda(s)^2 ds} \leq \sqrt{\tau K}$, where we used the Cauchy-Schwarz inequality, and the assumption $\int_0^\tau \lambda(s)^2 ds \leq K$ for some constant K . We can thus conclude that $E[N(\tau)] = E[\int_0^\tau \lambda(s)ds] \leq \sqrt{\tau K}$. Now, this implies that $P(N(\tau) < \infty) = 1$ (otherwise

$$E[N(\tau)]$$

wouldn't be finite). Thus, with probability 1, a realisation of N will have a finite number of jumps.

b) Choose n' large enough so that each of the intervals $\{(k-1)t/n', kt/n'\}_{k=1}^{n'}$ has at most one event (we have seen that such an n' is guaranteed to exist). Thus,

$$(N(kt/n') - N((k-1)t/n'))^2 = \begin{cases} 1, & \text{if there is an event in } [(k-1)t/n', kt/n') \\ 0, & \text{otherwise.} \end{cases}$$

Since N has a total of $N(t)$ jumps of size 1 up to t , the sum reduces to

$$\sum_{k=1}^n (N(kt/n) - N((k-1)t/n))^2 = N(t),$$

whenever $n \geq n'$. Hence,

$$[N](t) = \lim_{n \rightarrow \infty} \sum_{k=1}^n (N(kt/n) - N((k-1)t/n))^2 = N(t).$$

7. Suppose $M = \{M_0, M_1, M_2, \dots\}$ is a discrete Martingale. Show that $Cov(M_m, M_n - M_m) = 0, \forall n > m$.

Solution