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Problem Set 4 - Answer Key

1. (Exercise 2.4 in ABG 2008) Let M be a discrete time martingale with respect to the filtration
Fn, for n ∈ {0, 1, 2, · · · }, and suppose M0 = 0. Prove that M2 − ⟨M⟩ is a martingale with
respect to the filtration F , that is, that E(M2

n − ⟨M⟩n|Fn−1) = M2
n−1 − ⟨M⟩n−1.

Solution We have ⟨M⟩n =
∑n

i=1 E[(Mi −Mi−1)
2|Fi−1] and ⟨M⟩0 = 0 by definition, which

means that M2
0 − ⟨M⟩0 = 0. For n > 0,

E
[
M2

n − ⟨M⟩n|Fn−1

]
= E

[
(Mn −Mn−1 +Mn−1)

2 − E[(Mn −Mn−1)
2|Fn−1]− ⟨M⟩n−1

∣∣Fn−1

]
= E

[
(Mn −Mn−1)

2 +M2
n−1 − E[(Mn −Mn−1)

2|Fn−1]
∣∣Fn−1

]
− ⟨M⟩n−1

= E
[
(Mn −Mn−1)

2 − E[(Mn −Mn−1)
2|Fn−1]

∣∣Fn−1

]
+M2

n−1 − ⟨M⟩n−1

= M2
n−1 − ⟨M⟩n−1

where we used that E[(Mn − Mn−1)Mn−1] = 0, and that ⟨M⟩n−1 and M2
n−1 are Fn−1-

measurable.

2. Suppose we have n independent survival times {Ti}ni=1, where Ti corresponds to the time of
death of individual i. Suppose we somehow could observe each individual from t = 0 up to
his/her time of death.

In the lectures you learned that a counting process {N(t)}t≥0 is an increasing right-continuous
integer-valued stochastic process such that N(0) = 0. Write down the counting process N c

i

(that ”counts” the death of individual i) in terms of Ti.

Solution N c
i has at most one jump, at time Ti. As N c

i (t) is right-continuous it must take
the form N c

i (t) = I(Ti ≤ t)

You have also learned about the intensity process λ of a counting process N with respect to a
filtration F . It is informally defined through the relationship λ(t)dt = E[dN(t)|Ft].

3. Argue that the intensity of N c is given by λc
i (t) = αi(t)Zi(t), where Zi(t) = I(Ti ≥ t).

In general, if the intensity λ(t) of a counting process N(t) with respect to Ft can be written
on the form

λ(t) = α(t) · Z(t),

where α is an unknown deterministic function and Z is an Ft-predictable
§ function that does

not depend on α, N(t) is said to satisfy the multiplicative intensity model∗.

4. (Exercise 1.10 in ABG 2008) Consider the scenario in Exercise 2, and let Fc
t be the filtration

generated by {N c
i (s), s ≤ t, i = 1, · · · , n}. In the lectures we have seen that the intensity

of N c
i with respect to Fc in this case is λc

i (t) = E[dN c
i (t)|Fc

t ] = αi(t)Zi(t), where αi(t) is
the hazard function of individual i and Zi(t) = I(Ti ≥ t). Consider the aggregated counting
process N c(t) =

∑n
i=1 N

c
i (t).

i) Let {ηi(t)}ni=1 be known, positive, continuous functions. Find the intensity process of N c

with respect to Fc
t when αi take the following forms:

a) αi(t) = α(t)

b) αi(t) = ηi(t)α(t)

c) αi(t) = α(t) + ηi(t)

§Recall that this holds when Z is left-continuous and adapted to F , i.e. that all the information needed to know
the value of Z at time t is contained in Ft.

∗We will later derive estimators for the unknown function α under the multiplicative intensity model.



ii) For which of the three cases in i) does N c satisfy the multiplicative intensity model?

Solution We have

λc(t)dt = E[dN c(t)|Fc
t ]

=

n∑
i=1

E[dN c
i (t)|Fc

t ]

=

n∑
i=1

αi(t)Zi(t)dt.

Define Z(t) =
∑n

i=1 Zi(t) and Zη(t) =
∑n

i=1 ηi(t)Zi(t). Note first that Zi is left-continuous.
Also, all the information needed to determine whether Ti have happened at t is contained in
Fc

t . We thus have

i) a) λc(t) = α(t)Z(t)

b) λc(t) = α(t)Zη(t)

c) λc(t) = α(t)Z(t) + Zη(t).

ii) a) Yes
b) Yes
c) No. For any representation λc(t) = α̃(t)Z̃(t), either α̃ will not be deterministic or Z̃
will be a function of α.

5. Let N be a nonhomogeneous Poisson process with deterministic intensity function α(t). Define

H(t) =
∫ t

0
α(s)ds. The following two points i)-ii) provide equivalent definitions of such a

process:

i) • N(t)−N(s) ∼ Poisson(H(t)−H(s)) for s < t

• N(t)−N(s) is independent of Fs for s < t

ii)

P (Nt+δ −Nt = 1|Ft) = α(t)δ + o
(
δ2
)

P (Nt+δ −Nt = 0|Ft) = 1− α(t)δ + o
(
δ2
)

as δ −→ 0+.

Here, F is the filtration generated by N . The second condition in i) implies that E[N(t) −
N(s)|Fs] = E[N(t)−N(s)].

a) Show that M = N −H is a martingale with respect to F .∗

b) Show that the increments of M are uncorrelated, i.e. that, for v ≤ u ≤ s ≤ t, †

E[(M(t)−M(s))(M(u)−M(v))] = 0.

Suppose that N is only recorded up to the deterministic time X, and define N⋆(t) =
N(min{t,X}). Thus, N⋆ is the process N censored at X.

c) Argue that N⋆(t) is the observed number of jumps of N up to time t, and demonstrate
that N⋆ satisfies the multiplicative intensity model.‡

d) Suppose now that X is a random variable. Verify that the conclusion in c) holds when
{X ≤ t} ∈ Ft for each t, or equivalently, that I(X ≤ ·) is adapted to F .§

∗Hint: A Poisson distributed variable with parameter λ > 0 has mean λ.
†Note: this is true for any martingale M , not just the one from a).
‡Hint: start with definition ii). Alternatively, you may find it helpful to use N⋆(t) =

∫ t
0 I(X ≥ s)dNs.

§X is then called a stopping time with respect to F . Heuristically, Ft contains enough information to determine
whether X has occurred by t.



Solution

a) Since N(t)−N(s) is Poisson distributed with parameter H(t)−H(s) we have E[N(t)−
N(s)] = H(t) − H(s). Moreover, as N(t) − N(s) is independent of Fs we have that
E[N(t)−N(s)|Fs] = E[N(t)−N(s)] Combining those two observations we get

E
[
N(t)−H(t)−

(
N(s)−H(s)

)
|Fs

]
= E

[
N(t)−N(s)|Fs

]
− (H(t)−H(s))

= E
[
N(t)−N(s)

]
− (H(t)−H(s))

= 0,

where we used the fact that H(t) and H(s) are F-measurable (since they are deterministic
functions) in the first line, that N(t)−N(s) is independent of Fs in the second line, and
the expectation of a Poisson distributed variable in the third line.

b) We have

E
[
(M(t)−M(s))(M(u)−M(v))

]
= E

[
E
[
(M(t)−M(s))(M(u)−M(v))|Fs

]]
= E

[
E
[
(M(t)−M(s))|Fs

]
(M(u)−M(v))

]
= E

[(
E[M(t)|Fs]−M(s)

)
(M(u)−M(v))

]
= 0,

where we used the law of total expectation in the first line, the fact that M(u) −M(v)
is Fs-measurable in the second line (since u, v ≤ s), and the definition of a martingale in
the last line.

c) Definition ii) leads to the infinitesimal result

E[dN(t)|Ft] = α(t)dt.

Clearly, the intensity of N⋆ coincides with the intensity of N for X ≥ t, while it is zero
for X < t. Thus

E[dN⋆(t)|Ft] = α(t)I(X ≥ t)dt,

which means that the intensity of N⋆(t) with respect to Ft is α(t)I(X ≥ t), and N⋆ satis-

fies the multiplicative intensity model. Alternatively, use the identity N⋆(t) =
∫ t

0
I(X ≥

s)dN(s) directly. This leads to

E[dN⋆(t)|Ft] = E[I(X ≥ t)dN(t)|Ft]

= I(X ≥ t)E[dN(t)|Ft]

= I(X ≥ t)α(t)dt,

where we used the fact that I(X ≥ ·) is adapted (since it is deterministic) in the second
line.

d) We still have that the intensity of N⋆(t) is λ⋆(t) = α(t)I(X ≥ t). By this choice of X,
I(X ≥ ·) is both adapted to F and left-continuous, and λ⋆(t) satisfies the multiplicative
intensity model.

Solution

a) Since N(t)−N(s) is Poisson distributed with parameter H(t)−H(s) we have E[N(t)−
N(s)] = H(t) − H(s). Moreover, as N(t) − N(s) is independent of Fs we have that
E[N(t)−N(s)|Fs] = E[N(t)−N(s)] Combining those two observations we get

E
[
N(t)−H(t)−

(
N(s)−H(s)

)
|Fs

]
= E

[
N(t)−N(s)|Fs

]
− (H(t)−H(s))

= E
[
N(t)−N(s)

]
− (H(t)−H(s))

= 0,



where we used the fact that H(t) and H(s) are F-measurable (since they are deterministic
functions) in the first line, that N(t)−N(s) is independent of Fs in the second line, and
the expectation of a Poisson distributed variable in the third line.

b) We have

E
[
(M(t)−M(s))(M(u)−M(v))

]
= E

[
E
[
(M(t)−M(s))(M(u)−M(v))|Fs

]]
= E

[
E
[
(M(t)−M(s))|Fs

]
(M(u)−M(v))

]
= E

[(
E[M(t)|Fs]−M(s)

)
(M(u)−M(v))

]
= 0,

where we used the law of total expectation in the first line, the fact that M(u) −M(v)
is Fs-measurable in the second line (since u, v ≤ s), and the definition of a martingale in
the last line.

c) Definition ii) leads to the infinitesimal result

E[dN(t)|Ft] = α(t)dt.

Clearly, the intensity of N⋆ coincides with the intensity of N for X ≥ t, while it is zero
for X < t. Thus

E[dN⋆(t)|Ft] = α(t)I(X ≥ t)dt,

which means that the intensity of N⋆(t) with respect to Ft is α(t)I(X ≥ t), and N⋆ satis-

fies the multiplicative intensity model. Alternatively, use the identity N⋆(t) =
∫ t

0
I(X ≥

s)dN(s) directly. This leads to

E[dN⋆(t)|Ft] = E[I(X ≥ t)dN(t)|Ft]

= I(X ≥ t)E[dN(t)|Ft]

= I(X ≥ t)α(t)dt,

where we used the fact that I(X ≥ ·) is adapted (since it is deterministic) in the second
line.

d) We still have that the intensity of N⋆(t) is λ⋆(t) = α(t)I(X ≥ t). By this choice of X,
I(X ≥ ·) is both adapted to F and left-continuous, and λ⋆(t) satisfies the multiplicative
intensity model.

6. In this problem we will use the definition of the optional variation process [·] from the lecture

notes. Thus, we will need to take limits [G](t) = limn→∞
∑n

k=1

(
G(kt/n) − G((k − 1)t/n)

)2
(in probability) of processes G.

Let {N(t) : t ∈ [0, τ ]} be a counting process. Let λ be the intensity of N with respect to

some filtration F , so that Λ(t) =
∫ t

0
λ(s)ds is the cumulative intensity, and M = N − Λ is a

martingale with respect to F . Assume that
∫ τ

0
λ(s)2ds ≤ K for some constant K.

a) Show that N has a finite number of jumps with probability 1. Hint: start by looking at
E[N(τ)], use that M is a martingale and that

∫ τ

0
λ(s)2ds ≤ K.¶

b) Show that the optional variation process [N ] is equal to N (recall that there are no tied
event times, so that N(t)−N(t−) ≤ 1 for all t).

Solution

¶Hint: Use also the inequality
( ∫ b

a f(s)ds
)2 ≤ (b− a)

∫ b
a f(s)2ds.



a) We have that
∫ τ

0
λ(s)ds ≤

√∫ τ

0
12ds ·

∫ τ

0
λ(s)2ds ≤

√
τK, where we used the Cauchy-

Schwarz inequality, and the assumption
∫ τ

0
λ(s)2ds ≤ K for some constant K. We can

thus conclude that E[N(τ)] = E[
∫ τ

0
λ(s)ds] ≤

√
τK. Now, this implies that P (N(τ) <

∞) = 1 (otherwise
E[N(τ)]

wouldn’t be finite). Thus, with probability 1, a realisation of N will have a finite number
of jumps.

b) Choose n′ large enough so that each of the intervals
{
[(k−1)t/n′, kt/n′)

}n′

k=1
has at most

one event (we have seen that such an n′ is guaranteed to exist). Thus,

(
N(kt/n′)−N((k − 1)t/n′)

)2
=

{
1, if there is an event in

[
(k − 1)t/n′, kt/n′)

0, otherwise.

Since N has a total of N(t) jumps of size 1 up to t, the sum reduces to

n∑
k=1

(
N(kt/n)−N((k − 1)t/n)

)2
= N(t),

whenever n ≥ n′. Hence,

[N ](t) = lim
n→∞

n∑
k=1

(
N(kt/n)−N((k − 1)t/n)

)2
= N(t).

7. Suppose M = {M0,M1,M2, . . . } is a discrete Martingale. Show that Cov(Mm,Mn −Mm) =
0,∀n > m.

Solution


